Electrophysiological evidences demonstrating differences in brain functions between nonmusicians and musicians
نویسندگان
چکیده
Long-term music training can improve sensorimotor skills, as playing a musical instrument requires the functional integration of information related to multimodal sensory perception and motor execution. This functional integration often leads to functional reorganization of cerebral cortices, including auditory, visual, and motor areas. Moreover, music appreciation can modulate emotions (e.g., stress relief), and long-term music training can enhance a musician's self-control and self-evaluation ability. Therefore, the neural processing of music can also be related to certain higher brain cognitive functions. However, evidence demonstrating that long-term music training modulates higher brain functions is surprisingly rare. Here, we aimed to comprehensively explore the neural changes induced by long-term music training by assessing the differences of transient and quasi-steady-state auditory-evoked potentials between nonmusicians and musicians. We observed that compared to nonmusicians, musicians have (1) larger high-frequency steady-state responses, which reflect the auditory information processing within the sensory system, and (2) smaller low-frequency vertex potentials, which reflect higher cognitive information processing within the novelty/saliency detection system. Therefore, we speculate that long-term music training facilitates "bottom-up" auditory information processing in the sensory system and enhances "top-down" cognitive inhibition of the novelty/saliency detection system.
منابع مشابه
Hand skill asymmetry in professional musicians.
Hand skill asymmetry on two handedness tasks was examined in consistent right-handed musicians and nonmusicians as well as mixed-handed and consistent left-handed nonmusicians. Musicians, although demonstrating right-hand superiority, revealed a lesser degree of hand skill asymmetry than consistent right-handed nonmusicians. Increased left-hand skill in musicians accounted for their reduced asy...
متن کاملFaster Sound Stream Segmentation in Musicians than in Nonmusicians
The musician's brain is considered as a good model of brain plasticity as musical training is known to modify auditory perception and related cortical organization. Here, we show that music-related modifications can also extend beyond motor and auditory processing and generalize (transfer) to speech processing. Previous studies have shown that adults and newborns can segment a continuous stream...
متن کاملExpertise-related deactivation of the right temporoparietal junction during musical improvisation
Musical training has been associated with structural changes in the brain as well as functional differences in brain activity when musicians are compared to nonmusicians on both perceptual and motor tasks. Previous neuroimaging comparisons of musicians and nonmusicians in the motor domain have used tasks involving prelearned motor sequences or synchronization with an auditorily presented sequen...
متن کاملNeuroarchitecture of verbal and tonal working memory in nonmusicians and musicians.
Working memory (WM) for auditory information has been thought of as a unitary system, but whether WM for verbal and tonal information relies on the same or different functional neuroarchitectures has remained unknown. This fMRI study examines verbal and tonal WM in both nonmusicians (who are trained in speech, but not in music) and highly trained musicians (who are trained in both domains). The...
متن کاملThe music of speech: music training facilitates pitch processing in both music and language.
The main aim of the present experiment was to determine whether extensive musical training facilitates pitch contour processing not only in music but also in language. We used a parametric manipulation of final notes' or words' fundamental frequency (F0), and we recorded behavioral and electrophysiological data to examine the precise time course of pitch processing. We compared professional mus...
متن کامل